В Якутии создадут рабочую группу по пересмотру тарифов на электроотопление
16:00
За два дня полицейские выявили пять нарушений продажи алкоголя в Якутске
15:30
Увеличена грузоподъёмность ледовой переправы Якутск — Нижний Бестях
14:30
Дмитрий Садовников дал поручения по долгостроям в Якутии
13:30
Глава Якутии участвует в январском совещании Юрия Трутнева 
13:00
Частный гараж, пристрой и автомобиль сгорели в Якутии
12:30
В 2025 году Госстройжилнадзор Якутии провел более 2,5 тысячи проверок
12:00
Якутия получит 420 миллионов рублей на улучшение городской среды
11:30
В Якутске женщина обокрала магазин бытовой техники
11:00
Уроки студенчества: взгляд главного врача Якутской офтальмологической больницы
10:30
В Якутии выявлено более 4 тысяч правонарушений в сфере миграции в 2025 году
09:30
Тела женщины и мужчины с ножевыми ранениями обнаружены в Якутии
08:30
Количество заболеваний органов пищеварения в Якутии остается стабильным
23 января, 19:40
В Якутске 25 января — премьеры балета, спектакля и комедии
23 января, 19:16
Сбер развивает Process Intelligence как следующий этап эволюции Process Mining - Скворцов
23 января, 17:15

Эксперты обсудили конвергенцию технологий и вызовы машинного обучения на AI Journey

Профессора из Бразилии и Китая предложили инновационные подходы к созданию человекоцентричного ИИ
24 ноября 2025, 13:40 Общество
Эксперты обсудили конвергенцию технологий и вызовы машинного обучения на AI Journey Евгений  Кулешов, ИА PrimaMedia.ru
Эксперты обсудили конвергенцию технологий и вызовы машинного обучения на AI Journey
Фото: Евгений Кулешов, ИА PrimaMedia.ru
Нашли опечатку?
Ctrl+Enter

IrkutskMedia, 24 ноября 2025. На международной конференции по искусственному интеллекту AI Journey ("Путешествие в мир искусственного интеллекта") (18+) профессор Института вычислительной техники Университета Кампинаса Андерсон Роша и профессор Университета науки и технологий Циндао Дяньхуэй Ван представили своё видение развития ИИ, от глобальных трендов до прикладных задач в промышленности, сообщили в пресс-службе Сбера.

Профессор Андерсон Роша в выступлении "ИИ новой эры: от основ к трендам, возможностям и глобальному сотрудничеству" описал современный технологический ландшафт как эпоху конвергенции пяти ключевых технологий: биотехнологий, нанотехнологий, робототехники, интернета вещей и искусственного интеллекта. Он подчеркнул, что ИИ находится в центре этой системы, а его развитие носит экспоненциальный характер. Спикер проиллюстрировал мощь современных технологий примером быстрой разработки вакцины от COVID-19, которая стала возможной благодаря алгоритмам ИИ и генному редактированию.

Особое внимание Андерсон Роша уделил практическому применению ИИ для улучшения качества жизни человека. На примере своей лаборатории он показал, как носимые устройства и алгоритмы машинного обучения позволяют проводить раннюю диагностику болезней, таких как Паркинсон, предсказывать падения у пожилых людей и отслеживать уровень тревожности.

Отдельным вызовом, по мнению спикера, является проблема достоверности информации и синтетической реальности. Он рассказал о проекте "Horus" (18+), в рамках которого разрабатываются алгоритмы для борьбы с фейковым контентом и защитой пользователей в цифровом пространстве.

В заключение профессор Андерсон Роша обозначил ключевые тренды на ближайшее будущее: переход к более компактным и эффективным специализированным моделям, развитие мультимодальных систем и агентов, а также необходимость обеспечения безопасности и согласования целей ИИ с человеческими ценностями.

"Мы стоим на пороге большой волны конвергенции технологий, где ИИ — это центральная нервная система. Но ключевой вызов — не в том, чтобы сделать машины умнее, а в том, чтобы сделать их безопасными и согласованными с человеческими ценностями. Наша работа с носимыми устройствами, которая позволяет предсказать падение за несколько секунд до того, как оно произойдет, или распознать тревожность с точностью 95% — это лишь первые ласточки той эры, когда ИИ станет настоящим дополненным интеллектом, работающим для человека", — рассказал профессор Института вычислительной техники Университета Кампинаса Андерсон Роша.

Профессор Дяньхуэй Ван в выступлении "Вопросы, проблем и разработки в области машинного обучения" сосредоточился на прикладных проблемах машинного обучения в промышленности. Он указал на ключевую проблему современных нейросетей — их недостаточную надёжность и нестабильность, вызванную традиционными методами обучения, такими как обратное распространение ошибки. Спикер наглядно продемонстрировал, как классические модели могут давать неудовлетворительные и непредсказуемые результаты, что критично для реальных производственных процессов.

В качестве решения профессор Ван представил сети стохастической конфигурации — легковесные модели, которые обучаются в сотни раз быстрее традиционных аналогов при математически доказанной надёжности. На примерах из горнодобывающей промышленности и производства поликремния он показал, как этот подход позволяет создавать эффективные системы контроля там, где традиционные методы уже не работают.

Профессор Ван выделил основные требования к системам автоматизации следующего поколения: масштабируемость, способность к быстрой адаптации на основе данных в реальном времени и использование легковесных, но мощных моделей, специально разработанных для конкретных промышленных задач.

"Пока все говорят о GPT-4 и больших моделях, в реальной промышленности мы часто не можем позволить себе ждать обучения модели сутки и потреблять энергию целого города. Наш ответ — это легковесные сети стохастической конфигурации, которые решают конкретную производственную задачу с математической гарантией сходимости за 0,3 секунды, а не за день. Будущая конкуренция между странами развернётся не вокруг гигантских LLM, а вокруг создания именно таких эффективных и надёжных моделей для “умных” заводов", — сообщил профессор Университета науки и технологий Циндао Дяньхуэй Ван.

231596
55
70